Analyzing Life Cycles of Trucks

PACCARpe Diem Team: Ciara Gormley, Travis Mason, Rudolph Toepfer, Ashley Woodworth, Sally Yoon Project Sponsor, Project Advisor: Andrew Wells, Professor Patricia Cecilia Buchanan

Intro & Problem Statement

Leading the heavy-duty transportation industry in sustainability initiatives, **PACCAR seeks a more** comprehensive understanding of the environmental impacts from their sourcing, manufacturing, and distribution processes via a proof-of-concept Life Cycle Analysis (LCA) tool to gain insight of opportunities to improve sustainability of their products.

How can we estimate environmental impacts of a heavy-duty truck using a streamlined LCA to comprehensively analyze various data inputs and create a rudimentary but dynamic model?

How can we relay the significance and use-case of LCA to PACCAR and bolster corporate sustainability?

What is LCA?

 The process of assessing a product, process, and/or system from "inception to expiration," including raw material extraction, processes of production, lifetime use, end of life, and disposal.

 Scientifically recognized & standardized methodologies

 Scope can be refined to analyze specific impacts of a life stage or part of a product.

Why Use LCA?

• Optimize sustainability initiatives

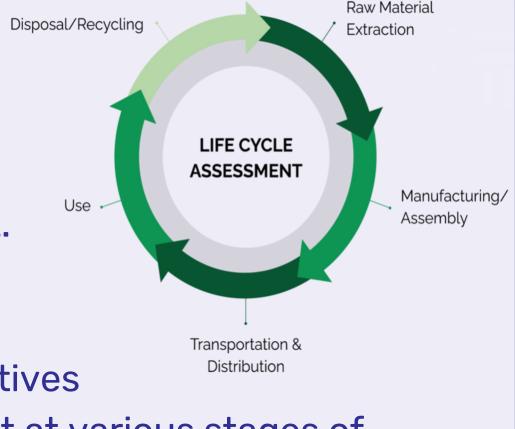
 Understand product's impact at various stages of lifecycle

- Ensure adherence to environmental regulations
- Develop performance indicators
- More holistic evaluation of alternatives
- Pinpoint areas for process and material improvements

• Make more environmentally informed business decisions

Scope 1, 2, & 3 Emissions

PACCAR wants to reduce their direct Scope 1 & 2 emissions, while creating products that minimize indirect scope 3 emissions.


Scope 2 Indirect

of purchased

energy

From generation From supply chain and customer use of products

Project Roadmap

Step 1: Research and Meet Stakeholders

• Visited Kenworth Plant and **PACCAR Technical Center** Initial project research, brainstorming and planning • Literature review & competitive analysis

Step 3: Assumptions & Risks

Project Assumptions:

• Majority of model will be based on estimated data • LCA will be built upon by PACCAR from our base model • PACCAR is interested in and striving to minimize their environmental impacts

Project Risks:

- Inaccurate analysis due to poor data sourcing
- Misinformed business decisions based on inaccurate analysis
- Model becoming outdated due to large changes to vehicle manufacturing

Step 4: Design and Build

PACCARculator Interface

The PACCARculator, based off of Carculator-Truck, consists of a **single python file to generate** figures that can be easily modified and interpreted.

 Capable of impact and sensitivity analyses Easy to use - Python based with GUI component

GREET-Based Materials Analysis

Developed by the Argonne National Laboratory to calculate fuel cycle and vehicle cycle emissions. GREET is customizable, but as a streamlined LCA it is only designed to model manufacturing processes with a limited amount of precision. GREET is easy to operate and is provided as an Excel spreadsheet.

Results and Recommendations

Project Impacts:

LCA can be performed in the spirit of **continuous** improvement. We hope that this project will serve as a jumping off point for PACCAR to implement LCA as a common practice in PACCAR's US subsidiaries.

This project has demonstrated:

PACCAR has multiple viable options for pursuing LCA implementation and other environmental initiatives

• A streamlined LCA analysis interface is possible to develop and can aid in sustainable decision making

Project Deliverables:

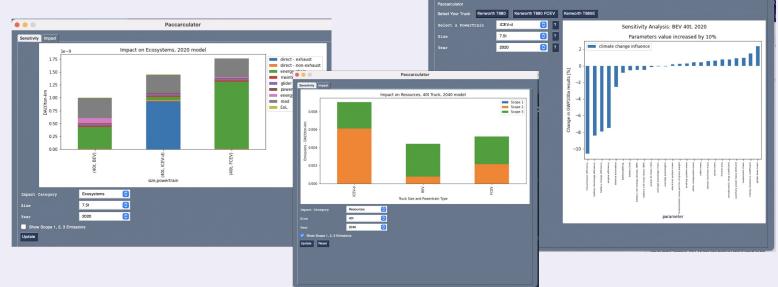
Team Recommendations:

Step 2: Identify Scope and Alternatives

Research and Model Creation: Research LCA software and alternatives to create an easy-to-use model that can compare basic environmental impacts of very basic heavyduty vehicles

Analyze Alternatives:

- 1. Carculator Packages
- 2. GREET
- 3. Full Component LCA

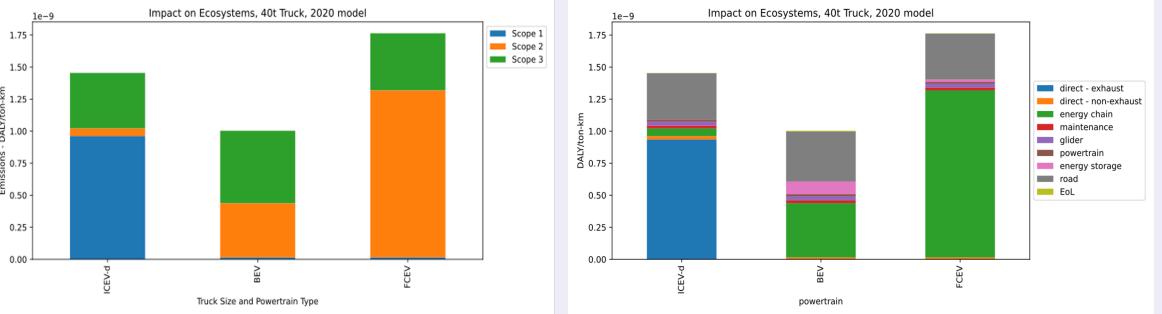

Step 5: Implement & Iterate

Deliverable Iteration: Implementing PySimpleGUI

• Create a user interface allowing users to modify and visualize Carculator-Truck inventories using any Python-compatible IDE.

Improvements made:

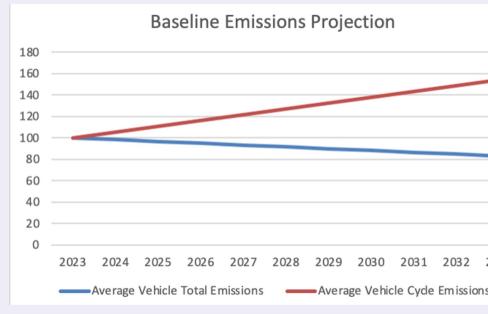
- Increase modifiable inputs
- Generate additional data visualizations
- Improve UI experience
- Built out GREET analysis for materials
- emissions planning


1. Written Research & Recommendation Report 2. PACCARculator files & modifiable interface 3. GREET Analysis

1. Build upon the PACCARculator and GREET modify to fit PACCAR needs and input PACCAR specific data

- 2. Go beyond LCA to pursue sustainability in design, sourcing, manufacturing, & distribution
- 3. Utilize LCA to inform customers and
- stakeholders about PACCAR's industry-leading sustainability measure

design processes

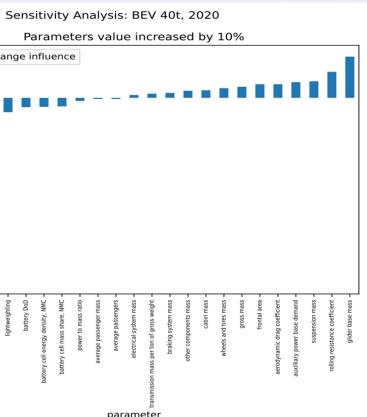

Parameters value increased by 10% climate change influence **Impact Analysis:**

Model Assumptions:

GREET: Materials Analysis

 Analysis based on a Kenworth T680 internal combustion vehicle (ICE), hydrogen fuel cell (FCV) & electric battery vehicle (EV). Emissions defined by vehicle cycle, vehicle operation, and well to pump (WTP) categories.

PACCAR CAPSTONE PROJECT


Identified Alternatives

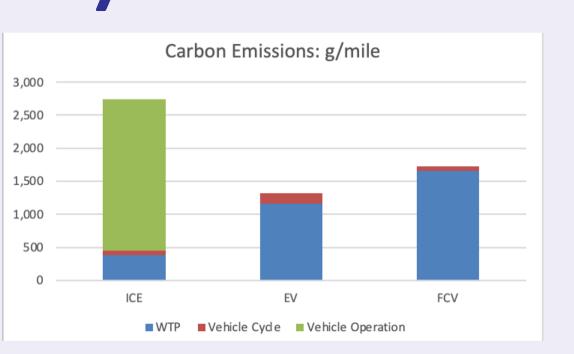
Carculator-truck: Open-source, python-based parameterized LCA model that allows users to generate life cycle inventories for different truck configurations based on selected input parameters.

GREET: Excel-based tool that evaluates life-cycle impacts of vehicles by calculating energy and water consumption, air pollutants, and emissions.

Full Component LCA: LCA approach with goal definition and scoping, inventory analysis, impact assessment, and interpretation. Typically requires 6+ months to complete. While outside the scope of PACCARpe Diem, PACCAR seeks to ultimately incorporate full-scale LCA into their decisions analyses and

PACCARculator: LCA Analysis

Sensitivity Analysis:


PACCARculator generates a climate change sensitivity analysis based on generalized truck data

Sensitivity analysis shows the parameters with the most effect on climate change if they were to be modified.

Given a specified year and vehicle size, generates an impact analysis based on a selected impact category. Compares three powertrain types: internal combustion engine vehicle (ICEV-d), battery electric vehicle (BEV), fuel cell electric vehicle (FCEV). Impacts can be categorized into scope 1, 2, and 3 emissions if indicated.

• All visualizations show results based estimated data Model will be used as an initial framework for streamlined LCA and not yet as a fully accurate, completed solution

Baseline Emissions Projection

 Based on linear interpolation of federal heavy duty vehicle EV targets, PACCAR vehicle cycle emissions are projected to increase as total lifetime emissions are reduced.